The portability of engineering softwar e systems

Nicholas, Gregg
ProQuest Dissertations and Theses; 1990; ProQuest Dissertations & Theses Global

TO THE OFFICE OF GRADUATE STUDIES AND RESEARCH:

Nicholas, Gregg., The Portability of Engineeerin frw ms, M.S.,Department of
Mechanical Engineering, August, 1990

The members of the Committee approve the thesiyof Geggg Nicholas presented on May 17,
1990. /
o/

'

r. Kynric Pell, Chairman

M) G

Dr. Michael Kmetz \\

(e flpatel
Dr. Andrew Hansen

Zonry X D™

Dr. Hegg# Bauer III

"‘APPROVED:

/4

Kyyé[l, Chairman, Department of Mechanical Engineering

Thomas G. Dunn, Dean of Gradua;e Studies and Research

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Nicholas, Gregg., The Portability of Engineering Software Systems, M.S.,Department of
Mechanical Engineering, August, 1990

The modern engineering software application is often required to communicate
with a variety of existing software libraries in order to utilize high level interfaces to de-
vices such as printers, graphical displays, and disk file structures. In this thesis the por-
tability of software systems utilizing these high level interfaces is examined. In addition

the porting of a simple computer aided design (CAD) application is examined.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

THE PORTABILITY OF
ENGINEERING SOFTWARE SYSTEMS
by

Gregg Nicholas

A Thesis
submitted to the
Department of Mechanical Engineering
and The Graduate School of The University of Wyoming
in Partial Fulfillment of Requirements
for the Degree of

MASTER OF SCIENCE
in
MECHANICAL ENGINEERING

Laramie, Wyoming
August, 1990

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyww.manaraa.com

UMI Number: EP23959

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform EP23959
Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

TABLE OF CONTENTS

CHAPTER PAGE
I. THE PROBLEM OF SOFTWARE PORTABILITY 1
THE FIRST PORTABLE SOFTWARE 1

DESIGN AND FUNCTIONALITY OF SIMPLE

SOFTWARESYSTEMS 1
EVOLUTION OF SOFTWARE SYSTEMS 2
DESIGN & FUNCTIONALITY OF MODERN

ENGINEERING SOFTWARE 2
THE TYPES OF PORTABILITY 3
THE GOALOFTHISTHESIS 4

II. THE SOFTWAREINTERFACES 5
THE ASSEMBLY LANGUAGE INTERFACE 5

THE ASSEMBLY CODE/BINARY INTERFACE 5

THE BINARY/MICROPROGRAM INTERFACE 6
THE FORTRANINTERFACE 7
THE MODERN SOFTWARE INTERFACE 8

INTERLIBRARY INTERFACES 10

THE SOFTWARE INTERFACES OF INTEREST 10

THE SOFTWARE LAYERS OF INTEREST 10
VALIDITY OF THE SOFTWAREMODELS 11

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

CHAPTER PAGE

III. THE SOFTWARELIBRARIES 12
THE MATHEMATICS LIBRARIES 12

THE SOFTWARE LANGUAGE LIBRARIES 13

THE GRAPHICALLIBRARIES 13

THE DATABASELIBRARIES0t 16

THE PRINTER/PLOTTER LIBRARIES 16

IV. METHODS IN PORTING SOFTWARE 18
SOURCE CODE ISOLATION/MODULARIZATION 18
COMPATIBLE SUBSETS IN FUNCTIONALITY 20
TRIVIALIZATION OF NON-PORTABLECODE 20

V. THECASESTUDY i, 23
THE TIME SPENT PORTING TF1 24
PORTING THE GRAPHICAL INTERFACE. 25
PROGRAM CONSIDERATIONS IN PORTING 33
LANGUAGE CONSIDERATIONS IN PORTING. 33
MISCELLANEOUS TIME SPENT PORTING 34

VI. HIGHER LEVEL GRAPHICAL INTERFACES 35
VII. CONCLUDINGREMARKSo, 37
APPENDIX A. THE SOFTWARE STRUCTUREOFTF1 39
APPENDIX B. C LANGUAGE CONFLICTS IN PORTING TF1 ... 41
APPENDIX C. THE TF1 GRAPHICAL INTERFACE 43
THE TF1 START-UP SEQUENCE 43
INITIALIZING THE GRAPHICAL INTERFACE 45

INITIALIZING THE GRAPHICAL FONT INTERFACE . 48

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

CHAPTER PAGE
INITIALIZING THE GRAPHICAL COLOR INTERFACE. 52
INITIALIZING THE GRAPHICAL EVENT INTERFACE. 58
INITIALIZING THE GRAPHICAL CURSOR

INTERFACE i . 60
INITIALIZING THE GRAPHICAL VIRTUAL

COORDINATEINTERFACE 62

OTHER TF1 GRAPHICAL UTILITIES 68

REFERENCES ... e i e ettt i i 74
iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

LIST OF TABLES

PAGE
Table 1. Functionality in Graphical Interfaces. 15
Table 2. A Summary of the Time Spent Porting TF1. 25

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

LIST OF FIGURES

PAGE

Figure 1. A Typical Software Layering Scheme for a Modern

Software Application. 3
Figure 2. Typical Software Layering Scheme for an Assembly

Language Program. 6
Figure 3. A Software Layering Scheme for a FORTRAN Program. . 8
Figure 4. Typical Software Structure for a High Level Graphical

Interface. 21
Figure 5. A Portable Window Structure. 27
Figure 6. Typical Coordinate Systems for a Graphical Interface 30
Figure 7. The General Structure of TF1. 40

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

LIST OF ABBREVIATIONS

ABBREVIATION TERM

/O Input/Output

XL oo X Window System! Version 11

ROM Read Only Memory

ANSI American National Standards Institute
DOS Disk Operating System

HPGL? Hewlett Packard Graphics Language
CAD Computer Aided Design

IDES Integrated Design Engineering Systems

1. The X Window System is a trademark of the Massachusetts Institute of Technolo-

gy.
2. HPGL is a registered trademark of Hewlett—Packard.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyww.manaraa.com

CHAPTER 1
THE PROBLEM OF SOFTWARE PORTABILITY

THE FIRST PORTABLE SOFTWARE

Since the introduction of digital electronic computers software applications
have been written to perform engineering calculations. At first engineering software
was written in assembly language, providing fast execution times at the expense of por-
tability and development time. Rapidly, high level procedural languages such as FOR-
TRAN became available, speeding program development time and providing a standard
language which was available in a variety of computer environments. The development
of higher level languages and hence the lack of dependence upon processor specific as-

sembly language was the first large step taken toward creating portable software.

DESIGN AND FUNCTIONALITY OF SIMPLE SOFTWARE SYSTEMS

In the late 1950’s high level procedural languages became available for usage
in engineering applications. One of the first languages, FORTRAN, evolved into a stan-
dard programming language for the scientific/engineering community. (Even today
FORTRAN 77, a descendent of the early versions of FORTRAN, is used widely as a
standard.) Using the FORTRAN language standard a program could read characters
from the keyboard and files, perform numerical calculations on input data, and write
output data to the display and files. A limitation in these systems was that the input and

output were limited to character 3 based I/O. Engineering software would often use

3. A binary write exists in FORTRAN but this is not a generally useful construct for

high level input and output.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

2
tables of numbers representing input and output data. These programs were extremely

portable since all I/O operations were performed by calls to the FORTRAN language
library routines. Using this system the only nonportable FORTRAN programs were
ones that included non-FORTRAN source code, or used incompatible FORTRAN im-

plementations in the porting of software.

EVOLUTION OF SOFTWARE SYSTEMS

Over time the user interface to software systems was expanded, causing an ex-
pansion in the number and complexity of interfaces used in software applications. The
earliest systems performed I/O using characters only. Later systems incorporated line
drawing, graphing and other functionality into the software. As this evolution occurred
the 1/O requirements of a program were no longer satisfied by any programming lan-
guage standard. Instead software developers created unique interface routines designed
to allow communication between programs and the devices unsupported by program-
ming languages. Many of these interfaces were program specific, but again through
evolution, libraries of interface routines were developed in order to facilitate communi-
cation. Unlike a programming language standard no real widespread standards occurred
for communication with peripheral devices such as printers and graphical terminals. As
a consequence, a large number of libraries exist, which have the same functional abili-

ties, but which are incompatible in usage.

DESIGN & FUNCTIONALITY OF MODERN ENGINEERING SOFTWARE

The newest engineering software systems incorporate many device interfaces
(see Figure 1) enabling the development of a relatively friendly and efficient user inter-
face as compared to the older systems. In addition, these interfaces are usually implem-
ented as libraries purchased for use with a computer system, giving the software
developer little knowledge about how the library functions really work. The main prob-

lems with many of these newer device interfaces occur when software is to be ported

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

3

from one environment to another. When this occurs the incompatibilities between dif-

ferent interfaces are exposed, forcing radical source code changes.

C Language Source Code Layer

Printer | Database |Graphics | C Language | Math Compiled C
Library | Library |[Library | Library Library | Source Code

MicroProgram Layer

Hardware Layer

i S

[]
h—
Graphics . .
Printer Files (Binary

or character format)

Terminal (One or more
graphical displays,
pointing devices, and
keyboard)

Plotter Databases
(One or more)

Figure 1. A Typical Software Layering Scheme for a Modem Software Application.

THE TYPES OF PORTABILITY

In practice there are two basic ways of porting a software system. The first
method is to alter the source code so that different library packages may be used. Using
this approach the software developer must pay attention to the functionality of each en-
vironment and write software using methods adaptable to each environment. The sec-

ond approach to software portability is to assume similar software interfaces exist in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

4
each environment in which the program will be run. Even within defined software stan-

dards (such as GKS, X11, and the ANSI C programming language) there are aspects
that are implementation defined. As a consequence few software interfaces are identical

in functionality and behavior.

THE GOAL OF THIS THESIS

In this thesis we examine a commercial software application named TF1(23),
and the library interfaces used to accomplish advanced I/O capabilities. Although a
large amount of research has been done on the theoretical aspects of software interfaces
little research has been done on the practical application of such interfaces. Given the
enormous cost in time and money spent porting modern software our objective is to ana-
lyze the porting of TF1 between two very different computer environments* in order to
understand, predict, and reduce the problems associated with porting. After examining
the problems in porting TF1, conclusions will be drawn conceming the porting of mod-
ern engineering software systems in general. The language used for all studies on the
TF1 program is C. Of the library interfaces shown in Figure 1, the only one described in
detail, and used in the porting of TF1, is the graphical interface’.

4. TF1 will be ported from a DOS based, single user, environment to a UNIX based,
multi—user environment. In the DOS based environment a non—standard graphical
interface named MetaWINDOW is used. The MetaWINDOW interface is limited
to a single application and is non—event driven. In the target envrionment a X11 '
graphical interface is used. The X11 interface is a multi-application event driven

interface.
5. A general discussion of all library interfaces is given in Chapter III.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

CHAPTER II
THE SOFTWARE INTERFACES

As was briefly described in the last chapter, several software interfaces exist for
almost all software written today. Even if the program is written in assembly language
there are usually several layers of software and corresponding interfaces between the
software layers. In the discussion that follows several software models are developed.
The three models presented have many similarities in structure. The important model
differences in our discussion are the portability, software development time, and knowl-

edge required to develop and maintain software in each of these models.

THE ASSEMBLY LANGUAGE INTERFACE

The simplest of the three models is the assembly language model. Assembly
language is a direct representation of the instructions a computer processor will follow
and is one of the most environment specific languages used. As a consequence, the time
spent developing computer code is large, and the knowledge required in order to develop
machine instructions is specific to the computer environment used. Historically, this
model represents the most primitive engineering software language.

THE ASSEMBLY CODE/BINARY INTERFACE. Figure 2 shows a typical
software layering scheme for an assembly language program. In Figure 2 the highest
level of interface is between the assembly language code layer and the binary instruction
layer. Here the assembly code layer contains symbolic instructions which are directly
converted into binary code. This interface is usually temporary in that the binary form of

the assembly code is usually executed directly. In almost all computer languages today

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

6
the top level software layer is usually a pseudoform of computer instructions. In reality

this layer usually represents a form of instruction easily comprehensible to people, but
not representing anything directly interpretable by a computer processor.

THE BINARY/MICROPROGRAM INTERFACE. The next interface in this
model lies between the binary code layer and the microprogram layer. Typically on a
personal computer the microprogram layer represents firmware implemented in ROM
memory. The final interface is between the microprogram layer and the physical hard-
ware of the computer. This is the lowest level of interface and typically does not directly
affect the development of engineering software since several layers of software hide the

developer from computer instructions at this level.

Assembly Language Layer

Software Interface,
(Development only)

Binary Instruction Layer
- Software Interface

Microprogram Layer

- Software/Hardware
Interface

Hardware Layer

- Hardware/Device

Interface
Text Terminal (Character Files (Character
Printer display and keyboard) or binary formats)

Figure 2. Typical Software Layering Scheme for an Assembly Language Program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

THE FORTRAN INTERFACE

The FORTRAN model represents an intermediate step in software develop-
ment. With the acceptance of FORTRAN a higher level procedural language standard
existed. Since FORTRAN represented computer processor instructions in an abstract,
high level, processor independent fashion most computer environments could support a
FORTRAN compiler. This high level representation of computing instructions was one
of the first and largest steps taken toward software portability. In addition, the higher
level FORTRAN language greatly decreased the requirements for application develop-
ment/maintenance time.

Figure 3 shows a software model of a FORTRAN application. Unlike the as-
sembly language program, the FORTRAN program incorporates parallel software lay-
ers at the binary instruction level (see Figure 3). These parallel layers are included to
indicate the introduction and common usage of several software libraries. In the diagram
of a FORTRAN program two libraries are present, a mathematics library and a FOR-
TRAN language library. Each of these libraries contains interfaces to the uncompiled
FORTRAN source code, the compiled FORTRAN source code, and the microprogram
layer. As a consequence of adding these library interfaces the source code layer must
additionally interface with two libraries and each of the libraries must interface with
three software layers.

Inspite of the additional software interfaces the FORTRAN model is generally
portable. There are several reasons for this. First, the FORTRAN language is environ-
ment independent so that the source code layer is portable. Second, the FORTRAN lan-
guage library is standardized in terms of functionality. Third, the mathematics library is

generally portable and is often written in a portable language such as FORTRAN.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

FORTRAN Source Code Layer
Software Interface
D '
FORTRAN | Compiled | Math (Development only)
Language FORTRAN Library
Library Code/Binary
Instruction | Software/Interlibrary
Layer Interfaces
Software Interface

MicroProgram Layer

Software/Hardware
Interface
Hardware Layer
Hardware/Device
Interface
Text Terminal (Character Files (Binary
Printer display and keyboard) or character format)

Figure 3. A Software Layering Scheme for a FORTRAN Program.

THE MODERN SOFTWARE INTERFACE

The most complex software model to be considered is the modem software in-
terface shown in Figure 1. Although FORTRAN would be a completely valid language
in this model, the C language is used because of its acceptance in the UNIX/graphical
interface environments. This usage of C greatly increases the knowledge required by a
programmer. The programmer must now understand and use concepts such as: pointers,

structures, memory management, etc.(7,9,10,19,22) In addition, the number of library

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

9

interfaces has dramatically increased. Because many of these libraries are evolving in

functionality, and many non-standard libraries are in use, conflicts between library inter-

faces are common when porting software.

The FORTRAN model had many advantages, and few disadvantages over the

assembly language model, but what advantages does the modern C model have over the

FORTRAN model? In the modern C model the user interface has changed dramatically.

Now the user interacts with the computer via a graphical terminal, pointing devices, and

keyboard. In addition data is stored using higher level constructs associated with data-

bases. In this model a large trade—off has been made, increasing software complexity in

order to enhance the user interface and application functionality.

C Language Source Code Layer

Printer | Database
Library | Library

Graphics | C Language | Math
Library | Library Library

Compiled C
Source Code

MicroProgram Layer

Hardware Layer

Graphics
Printer

Plotter

Terminal (One or more
graphical displays,
pointing devices, and
keyboard)

N

Files (Binary
or character format)

Databases
(One or more)

Figure 1. A Typical Software Layering Scheme for a Modem Software Application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

10
INTERLIBRARY INTERFACES. To complicate matters further interlibrary

interfaces may also exist. For example, the printer library may need to know something
about the graphics library in order to access display information, or the database library
may have built in I/O routines, creating redundant functionality with the graphics li-
brary. Even the modern graphical library is often represented by two or more libraries.
These additional graphical interfaces would schematically be represented between the C
Language Source Code Layer and the Graphics Library since they often provide higher
level graphical functionality. If interlibrary interfaces exist, then the switching of one
library for a functionally equivalent one may be complicated by dependencies on other
libraries.

THE SOFTWARE INTERFACES OF INTEREST. To the high level program

developer, and the engineer developing applications, the most important interfaces are
between the uncompiled source code layer and the layers directly beneath this layer. De-
veloping at this level implies writing all code in a language standard and using the li-
braries for lower level functionality. The key to maintaining portability is to isolate the
source code from library dependencies which are not easily portable. All interfaces be-
low these source code interfaces are lower level and usually hidden from the high level
program developer by the developers of the lower level libraries.

THE SOFTWARE LAYERS OF INTEREST. Similarly the high level program-

mer should limit his interest to the source code layer and layers directly beneath this
layer. The source code layer is of obvious interest since this layer is a representation of
all instructions that are unique to one application. The libraries below the source code
layer are of interest because they affect the software design and portability of the source
code layer. For example, a developer may need to draw polynomials from mathematical
representations of the polynomials. If a graphics package provides functionality enabling
these curves to be drawn from mathematical representations, then the burden of mapping

the polynomial to lines or pixels is removed from the source code. However, by depend-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

11
ing upon the graphics package to provide this functionality the developer has made por-

tability assumptions. In porting this software the developer has two choices, either find a

graphics environment supporting the drawing of polynomials or add source code elimi-

nating the dependence on the graphics environment. In the example given, the usage of a
'~ software library function to draw polynomials decreased code size and also decreased

portability.

VALIDITY OF THE SOFTWARE MODELS

Although other sophisticated software models exist, the three models discussed
above display all of the necessary functionality and complexity required for our pur-
poses. Complex software models such as the client—server model for X11(21) are some-
what hidden from the programmer and provide added complexity in terms of the sharing

of resources by an application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyww.manaraa.com

CHAPTER I
THE SOFTWARE LIBRARIES

In this chapter the libraries shown in Figure 1 are examined. The goal here is
to define the general functionality and portability problems associated with each of these
libraries. This is done as a precursor to a closer examination of the problems and poten-

tial solutions to using these libraries in a portable fashion.

THE MATHEMATICS LIBRARIES

In general mathematical libraries may be classified as either a subset of the lan-
guage library or as a separate library provided independent of a language compiler. The
math libraries included with a language library usually consist of routines to perform
simple mathematics such as trigonometric and logarithmic functions. Separate libraries
are often used for more complex and specific math functions such as matrix algebra and
Fourier transforms.

There are two general concemns in using these libraries in a portable fashion.
First, the internal representation of numbers within a computer can affect the accuracy
of numerical solutions. Real numbers are represented in computer memory by a finite
number system. This mapping from the infinite real number system to a finite number
system limits the accuracy with which a number can be represented. In addition differ-
ent methods exist for storing numbers in memory and for performing mathematical op-
erations on these numbers. As a consequence the accuracy of numerical calculations
will often vary greatly between computer environments.

At a higher level the mathematical algorithms used to arrive at a numerical so-

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

13
lution can have a large affect on the accuracy of numerical functions. All of the con-

cerns expressed above can have a large affect on the precision and convergence of a

mathematical function toward a solution.

THE SOFTWARE LANGUAGE LIBRARIES

In addition to defining the conversion of source code to binary instructions,
modern high level programming languages have libraries of binary routines available for
use by the compiled source code. These libraries include functions for such operations
as: file manipulation, formatted input and output, string manipulation, error handling,
mathematical manipulations, memory management, etc. The range of functionality in-
corporated into language libraries can vary widely.

In the more recent C language libraries one main hindrance to portability exists.
This hindrance stems from the lack of uniformity in the functions provided with the lan-
guage libraries. In addition this can also hinder the usage of other libraries, which may
be dependent upon functionality within the C language library(9).

Currently, an ANSI standard(9) exists defining the functionality of the C lan-
guage libraries. Before the ANSI standard was created many unique C language li-
braries existed. These non—standard C language libraries often provide conflicts

between different implementations and with the ANSI C libraries.

THE GRAPHICAL LIBRARIES

The graphical interface is one of the most nonportable of the library interfaces
used. There are several reasons for this. The functionality of a graphical interface can
vary widely which hinders the development of general definitions of the functionality of
a graphical interface. For example, a simple nonstandard graphical interface may con-
sist of functionality allowing the user to access pixels on a display for line drawing and
simple text abilities via a bitmapped font. In contrast, the X11 System(15,27) considers

one terminal to be an X Server and as a consequence provides functional interfaces for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

14
most, if not all, devices associated with the terminal. In addition, the X11 system con-

tains an event driven interface along with support for inter—client communication. Clear-
ly there exist large differences in library functionality between the two interfaces
described above. Table 1 lists areas of the functionality for graphical interfaces.

We have described the large potential for functional differences and should note
here that another problem is the way in which functional elements are used in a graphi-
cal interface. For example, in X11 the drawing routines generally refer to a structure
called the "graphics context”(15) as a resource for information on how a drawing opera-
tion should be performed, but few functionally equivalent constructs are used in other
graphical systems. As a result of these problems graphically dependent software often
requires a large amount of porting time in order to overcome differences between graph-

ical interfaces.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

15

TABLE 1. Functionality in Graphical Interfaces.(5,13,15,16,21)

Functional area

Specific topics in functional area

Buttons
Colors
Cursor
Display lists

Drawing Arcs

Drawing Lines
Drawing Splines

Drawing Text

Events

Fonts

Graphing

Images

Interclient communication
Keyboard

Menus

Metafiles

Pointers

Shading

Windows

specification, types

number available, modifiable/definable, representation of
shape, visibility

maintenance of

speed, rcsblution, color, positioning, thickness,

line style

speed, color, line style, thickness, positioning

speed, resolution, mathematical types, color, line style
color, direction, slant angle, font, character spacing,
positioning

information content, queue size

types, properties, bitmapped, stroked

placement, axes, legend, graph type

storage, retrieval, data format

buffers, hooks

mapping, available keys, input form

pull-down, pop—up, format, specification of items
input, output, scope

shape, size, color, tracking

fill patterns, defining screen areas

specification, coordinate systems, attributes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

16
THE DATABASE LIBRARIES

The use of databases allows the creation of high level data structures and the
easy manipulation of data within these structures. In engineering applications these high
level structures often contain information such as material properties or mechanical part
properties. The usage of a database interface allows a programmer to manipulate data at
a high level, freeing the programmer from low level, data management concerns.

There are many different types and corresponding categorizations of data-
’bases(l,2,3,4,6,8,17,18). Three predominant categorizations which are not mutually ex-
/clusive are navigational/non—navigational, object—oriented/non—object—oriented, and
relational/non—relational. From the perspective of portability there are several potential
problems with database interfaces. These problems arise mainly because of the funda-
mental differences between the models above. For example, the relational model in gen-
eral has all of the capabilities of the historical network and hierarchical models, but
these historical models lack greatly in functionality in comparison to the relational mod-
el. Presently a standard, SQLS, does exist as an interface to the relational database mod-
el. The object—oriented model presents the newest technology and as a consequence the

definition of what constitutes an object—oriented system is still evolving.

THE PRINTER/PLOTTER LIBRARIES

Some of the most nonportable and troublesome interfaces are to devices such as
printers and plotters. To use one of these devices a software package must know two
things about the computer environment. First, the communication path to the printer
must be defined. This may represent a hardware address or spooling software maintain-
ing a queue. The second requirement is that a common language be used for communi-

cation with the peripheral device. In the case of communication languages several

6. SQL is a trademark of International Business Machines Corporation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

17
common, or widely used, languages exist such as HPGL and PostScript’.

7. PostScript is a trademark of Adobe Systems, Inc.

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

CHAPTER IV
METHODS IN PORTING SOFTWARE

Three basic methods of porting software are examined here. Each of the meth-
ods examined has limitations in usage and where appropriate may be used in combina-
tion with other methods discussed. The first method examined is to isolate nonportable
code, the second is the usage of compatible subsets of code, and the third is the triviali-
zation of nonportable code. Each of the methods presented share a goal of reducing de-

velopment/maintenance time in the life—cycle of software.

SOURCE CODE ISOLATION/MODULARIZATION

Modularity in software design is one of the fundamental principles in sound
software engineering. By modularizing source code, changes in code have localized ef-
fects and can be implemented rapidly.(12,24,25) In addition, the number of modifica-
tions can be reduced, and the readability of source code enhanced. As an example we
present the line drawing functions for X11 and a corresponding modularization of the
usage of this nonportable function. In X11 the standard line drawing(15,27) procedure
has the form:

XDrawLine(display, drawable, gc,

x1,yl,x2, y2)

Display *display;

Drawable drawable;

GC gc

intx1, yl, x2, y2;

Here the display and drawable arguments refer to a physical display screen and an asso-

ciated graphics window. The gc (graphics context) argument is a reference to a C struc-

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

19

ture which contains color information, line width, and other drawing information.
Following this are the coordinates defining the screen position of the line within the
screen window (drawable). In addition, the coordinate system in which the last four pa-
rameters are defined is a pixel based system. In using this function in the form given
above portability problems arise from two sources. First, the graphics context argument
represents a structure unique to X11 and as a consequence is not supported by other
graphical systems. Second, the coordinate system in which the last four coordinates re-
side is a pixel based system with the coordinate 6rigin based in the upper left comer of
the window (interior to the window border). In order to utilize this function in a semi—
portable fashion the following function was written:

DRAW_LINE6(x1, y1, x2, y2, width, color)
double x1, y1, x2, y2;
int width;
unsigned long color;
change color if required

transform coordinates x1, y1, x2, y2 to pixel based coordinates
use line drawing procedure appropriate for graphics environment

}

Here the coordinates represent a virtual coordinate system defined earlier in the source
code, the width represents the line width in pixels, and the color is defined by the graph-
ical system. Although much of the information given to this functional routine is de-
fined elsewhere, the points to be made here are that this routine can be implemented in
most graphical environments and that using this routine in an application provides a
modular way of isolating nonportable source code.

The example given above represents an example modularization of nonportable
source code and the implementation of an intermediate functional layer in order to
create a generic interface to the DRAW_LINEG function. A potential disadvantage in
the example given above is the performance degradation imposed by an additional func-
tion call. In addition, the implementation of some graphical line drawing calls may be

difficult within the DRAW_LINEG function.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

20
COMPATIBLE SUBSETS IN FUNCTIONALITY

Often professional programmers examine software environments and imple-
ment software applications based upon compatible functionality in the environments ex-
amined. Using this approach portability is enhanced by using only those functional
elements of an interface that are provided in other interfaces.

An example of this technique can be seen in the usage of the X11 graphical in-
terface. In the X11 management of fonts, properties are associated with fonts. For ex-
ample, in order to underline a character in X11 properties exist which describe where a
rectangle should be placed under the characters, and the height of the rectangle in pixel
units. Given these properties the underlining of characters within the X11 interface is
easily done, but by the guidelines given for X11 fonts, properties are not guaranteed for
any font. In fact, the X11 implementation used for our development work lacked a defi-
nition for many of the font properties and was specifically lacking in defined properties
for underlining. Because of this underlining within the X11 system is nonportable un-
less special care is taken to provide fonts with the appropriate properties.

As a consequence of this the CAD application, TF1, does not support underlin-
ing, enhancing portability within the X11 system. Often functional restrictions such as
this are unacceptable, and a compromise between the portability of an application and

the functionality within an application is made.

TRIVIALIZATION OF NON-PORTABLE CODE

The last porting philosophy examined here represents a method of reducing the
size of the nonportable source code. In order to demonstrate this idea the following ex-
ample is given using the X11 interface.

Figure 4 shows a diagram of an application interface to the X11 system. In this
diagram four software layers are shown, describing the interface of an application to the
X11 graphical system. Here the application layer represents the software layer devel-

oped by the programmer. The Toolkit layer(16,21,26) represents a high level set of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

21
graphical utilities. The Toolkit/Xlib interface represents portions of the Toolkit which

are specific to X11. This layer might include facilities for creating menus or other high-
er level functionalities. The lowest layer shown is the Xlib layer and represents the
graphical X11 system.

By using a higher level package such as the Toolkit shown in Figure 4 the
amount of nonportable code at the application level may be greatly reduced. Another
consequence of using higher level libraries is a reduction in development/maintenance
time. Several potential implications follow from the usage of these high level libraries.
One potential implication higher level graphical systems often impose is a policy as to
how the user will interact with an application. For example, many programs can be de-
scribed as Macintosh-like? in their usage. By imposing a policy upon application ap-
pearance a high level library creates a nonportable application. Another potential
problem with higher level libraries can be the lack of portability of the functional inter-
face. As an example, consider porting an application using the structure shown in Fig-
ure 4 to another graphical environment. If the higher level utilities are not compatible

then the application is nonportable.

Application

Toolkit (high level graphical interface)

Toolkit/Xlib Interface

Xlib (low level graphical interface)

Figure 4. Typical Software Structure for a High Level Graphical Interface.

Each of the methods of attaining portability given above have advantages and

disadvantages. In addition, these techniques are non—exclusive in their usage. The ex-

8. Macintosh is a trademark of MclIntosh Laboratory, Inc. licensed to Apple Comput-

er, Inc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

22
ample of line drawing routines given involves isolation of nonportable code, but this ex-

ample also demonstrates the usage of compatible subsets in functionality. The virtual
coordinate system described in the draw line example was implemented without aid of
the graphical interfaces since some graphical interfaces lack this functionality. (X11

does not support virtual coordinate systems.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

CHAPTER V
THE CASE STUDY

Here the case study in portability is examined. This case study involves the
porting of a simple computer aided design (CAD) application between two very differ-
ent environments. The first environment is a DOS? based single user environment using
several libraries for graphical and printer interfaces. The target environment is a UNIX
environment using an X Windows library for graphical support and containing no sup-
port for printers. Database support is provided via a simple source code level routine
and is limited to the examination and selection of materials and properties from within
the database. The goal here is to examine general porting problems based upon our ex-
periences in porting a simple CAD application. A detailed discussion of porting data-
base library interfaces and printer library interfaces is beyond the scope of this thesis.

The CAD application TF1(23) provides design tools for engineers performing
plastic part design. The application requires eight graphical windows, four of which are
stationary and always visible, and four of which are stationary pop-up windows. In
these windows text is drawn using colors if available and two text types, one normal and
one bold. A cursor is implemented for prompting number input. Finally, interactive
graphical input is not allowed, and graphical output is only allowed through predefined
drawings and drawings/graphs which are generated by numerical calculations within the
TF1 application. For a more detailed explanation of the TF1 program refer to appendix

A.

9. IBM and PC-DOS are registered trademarks of International Business Machines

Corporation. MS-DOS is a trademark of Microsoft Corporation.
23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

24
THE TIME SPENT PORTING TF1

In order to determine objectively where potential porting problems exist a log
of time spent at the computer was kept. Table 2 is a synopsis of this time accounting
and details how all time directly related to the porting of TF1 was spent on the comput-
er. The first two columns of Table 2 describe the porting time in terms of more general
porting topics. Columns three and four in Table 2 describe a more detailed accounting
of the time spent porting TF1. In Table 2 program refers to time spent porting the TF1
program in general. This includes the time spent creating a computer environment for
the compilation and linking of the software components. The term "language” refers to
the porting time spent in order to accommodate the language implementations in each of
the porting environments. This time is directly related to conflicts in the C language and

 the associated language library used. The term “graphics” refers to the porting of the
graphical interface. The last category, or term, is “miscellaneous” and encompasses all
other porting time spent on the computer. Table 2 does not reflect the hours spent learn-
ing the operating systems and library interfaces. Of the approximately 375 hours spent
on the computer 148 are accounted for in Table 2, with the remainder of the time being
attributed to learning the computer environments.

Although the time accounting in Table 2 may not equally represent all aspects
of the porting process, several general conclusions can be drawn. (The TF1 application
has unique functional library requirements which may not be representative of the func-
tional requirements of other software applications.) Here the aspects of the porting pro-
cess encountered in the porting of TF1 are discussed. The following discussions closely

follow the itemized accounting of Table 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

25
TABLE 2. A Summary of the Time Spent Porting TF1.

General Percent of Specific Percent of
Description Total Time Description of Work Total Time
Program 27.3 General 16.0
Material Manager (database) 4.9
Engineering Design Modules 25
Environment Setup 3.9
Language 17.6 Debugging 0.6
Conversion to UNIX C 17.0
Graphics 43.1 General 7.0
Windows 8.2
Colors 4.5
Scaling/Graphing 9.4

Text Drawing/Font Management 8.1

Line/Curve Drawing 2.1

Keyboard/Event Handling 3.7
Misc. 12.0

PORTING THE GRAPHICAL INTERFACE. From Table 2 the largest single
porting problem is the graphical interface. There are several reasons for this in spite of
the simple graphical functionality utilized in TF1. These problems are a result of the
differences in functionality and differences in the functional interfaces provided in each
of the graphical environments. Here a discussion of the problems encountered in port-
ing the graphical interface is presented. In addition, a graphical interface dependent
window structure is presented as a means of hiding the details of a graphical interface

from the programmer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

26
The Window Structure. In order to hide nonportable details of a graphical im-

plementation a window structure was created (see Figure 5). This structure contained the
graphical information required to maintain a particular window. The main points of in-
terest in looking at this structure are the types of information included with each win-
dow. The structure is conditionally defined according to the graphical environment
present. For example, the metaPort!? type is used in MetaWINDOW(13) to define a
window whereas in the X11 system the Window type is used. Also drawing information
is provided for the MetaWINDOW!! and X11 environments via the metaPort and graph-
ics context data types, respectively. The last major point in examining this structure is
the inclusion of coordinate system information. This was done to free the programmer
from graphical environment dependent coordinate systems. These coordinate systems
are usable with any graphical interface providing access to pixel coordinate systems.
Using this window structure in combination with intermediate, generic, draw-
ing functions allows programmer independence from graphically interface dependent

information.

10. This is a C structure containing information particular to a window such as back-

ground color, wind_ow position, and window size.
11. MetaWINDOW is a DOS based graphical interface used for TF1. This interface is

a non-standard, non-event driven, single application interface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

27

typedef struct
{

char window_name[30];
#if GS_METAWINDOW

metaPort window;

metaPort *window_pointer;

rect frame;

rect fill;

image *saved_image;
#elif GS_X11

Window window;

XlImage *saved_image;

char *image_data;

GC graphics_context;
#endif

unsigned long frame_color,
background_color,
forground_color;

nt x_orig,
y_orig,
pwidth,
pheight;

int current_trans;

virtual_scale text_scale_1,
text_scale_2,
text_scale_3;

virtual_scale draw_scale_1,
draw_scale_2,
draw_scale_3;

virtual_scale graph_scale_1;

}

window_type;

Figure 5. A Portable Window Structure.

General Graphical Porting. In Table 2 the term “general” is used to describe
time not attributable to any one item under a particular category. For the graphical inter-
face the time described as “general” represents 16% of the time spent on graphics. This
might be used as a measure of the error in the other titme measures provided for the
graphical interface.

Porting the Graphical Windows. In Table 2 the second category under graphics

is the "windows” category. This represents time spent programming function calls to

open and manipulate the screen windows. In addition this time reflects development/im-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

28
plementation time for the window structure described above. In TF1 eight windows are

created, all of which are of a fixed size and position. Four of these eight windows are
pop—up windows used to temporarily display information. In most graphical systems a
significant amount of time is required in order to write source code to open a window of
the correct size and make this window visible. In addition, erasing window contents and
the redrawing of windows must be addressed. Of the time spent with graphical windows
a large portion can be attributed to correctly setting up the functionality described above.

The usage of the window hierarchical structure within X11 was avoided since
this hierarchy is nonportable. In addition, the ability to save areas under pop—up win-
dows was implemented as conditionally dependent upon the graphical interface pro-
vided. A display list is maintained within TF1 in order to support systems which do not
have the ability to save window display areas.

Porting the Graphical Color Interface. The graphical implementation of colors
differed greatly between implementations. The original TF1 program required user con-
figuration information about the type of display device and according to this information
enabled either a two color or a 16 color system. Under the X11 system the colors are
implemented as either two color or 16 color as before. In order to support this scheme
in the X11 system three separate color implementation schemes are used. For mono-
chrome systems or systems with a few fixed colors the system defined black and white
colors are used. The second implementation scheme is for systems with 16 to 64 modi-
fiable colors available. This scheme implements a virtual color map, preserving the
originally defined colors for other applications, and also providing TF1 with the 16 col-
ors it requires. The third scheme is for systems supporting a large number of colors.
Under this scheme the default colormap is used for the 16 colors needed by TF1. Here
the assumption is that a sufficient number of colors exist to support all currently running
applications in the X11 system. The three schemes used in the X11 implementation

were required in order to maintain compatibility with most environments encountered

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

29
using this system. The large amount of time spent porting colors is a direct consequence

of the large amount of time spent implementing the adaptable X11 color schemes. This
overhead can be anticipated with any system utilizing the X11 interface in a portable
fashion. In general color implementations vary greatly between graphical interfaces and
as a consequence implementation times can also vary by a large amount. A common
aspect of most color implementations is the usage of discrete numbers (int or unsigned
long int in the C language) in representing the allowable colors.

Porting the Graphical Scaling/Graphing Interface. The scaling and graphing
portions of the interface also required a large amount of time. The graphing portion of
this time represents modifications to higher level utilities used to create two—dimension-
al graphs. Modifications within the graphing utilities are mainly a consequence of a
newly implemented virtual coordinate system.

Figure 6 shows the coordinate systems assocaited with a typical graphical dis-
play. Three coordinate origins are shown. The coordinate origin denoted by (X,Y) is
the global coordinate origin. This coordinate system has an origin at the upper left cor-
ner of a graphical display and a unit system where one unit in the coordinate system cor-
responds to 1 pixel on the graphical display. The second coordinate system shown is
denoted by (x,y) and is the local coordinate system. This coordinate system is asso-
ciated with a graphical window and has an origin at the upper left corner of the window.
(Several local coordinate systems may exist, one for each graphical window used.) The
scaling of the local coordinate system is pixel based as in the global coordinate system.

The final coordinate system shown is denoted by (&,#) and represents a virtual coordi-

nate system. As this coordinate system has a user defined origin that is limited only by
the numerical restrictions within a computer. In this coordinate system the scaling is

non-pixel based and is represented either by integer values or by floating point values.
In addition this coordinate system may be rotated by a multiple of ninety degrees rela-

tive to the local and global coordinate systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

30

Graphical
Window

Graphical
Display

o

Figure 6. Typical Coordinate Systems for a Graphical Interface.
The scaling portion of the porting of TF1 represents the incorporation of a

floating point virtual coordinate system for use by the graphical interfaces. The imple-
mentation of this virtual coordinate system is a direct consequence of the lack of support
for virtual coordinates within the X11 interface. The conflict in the implementation of
virtual coordinate systems was unanticipated because of initial unfamiliarity with the
X11 system and the common usage of virtual coordinates by many graphical interfaces
in the DOS environment.

Porting the Graphical Font/Text Interface. Portable functionality within the
font/text management areas is one of the most difficult aspects within a graphical inter-
face. The original TF1 graphical environment provided one font with the attributes of
bold, underline, and italic. Inthe X11 implementation used for development over two
hundred fonts were provided, but under the X11 implementation four fonts are required
in order to provide the functionality of the one font within the MetaWINDOWs system.
This is becausé the type faces bold and italic are treated as separate fonts within the X11
system. In addition the X11 system provides limited support for the underlining of char-

acters. Because of the complex implementation of fonts within the X11 system the deci-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

31
sion was made to provide two fonts to the TF1 application. One of these fonts provides

a normal type face and the other font is used for highlighting text.

The text drawing operations were modified using an intermediate function 12 in
order to provide consistent functionality. In particular the graphics context used within
the X11 system was hidden from the drawing function calls since this represents a non-
portable construct. The graphics context for a window is defined in the window struc-
ture described above.

Porting the Graphical Line/Curve Drawing Interface. The porting of line and

curve drawing operations was a simple one. As with the text drawing operations the
graphics context was hidden in the window structure and only used within intermediate
functions. Over 50% of the time spent implmﬁenting line and curve drawing was spent
debugging a problem in the usage of coordinate transformations. Although this problem
in coordinate transformations may be repeated in the future, it is not anticipated to be a
reoccurring problem. Therefore, the time spent porting these functions is exaggerated in
Table 2.

Porting the Keyboard/Event Handling Interface. Within the original environ-
ment the keyboard interface was provided via a C language function called
"getch()”’(14). The X11 system on the other hand uses an event driven interface de-
signed to allow multiple applications to run in a time sharing !3 fashion. In order to pro-
vide higher level keyboard independent functionality within TF1 a mapping was
originally incorporated into TF1 to allow the redefinition of keyboard return values. A
similar functionality was provided within the X11 system, and, therefore, multiple key-

board mappings occur in the TF1 implementation within the X11 system. Fortunately,

12. For more details on the usage of intermediate functions refer to chapter 4, p. 11.

13. Time sharing is used here to describe the sharing of one processor by multiple
software application. True concurrency cannot be achieved using a single comput-

€r processor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

32
this additional overhead has not presented a problem in execution speed since user key-

board input is performed rarely as compared to other demands placed upon the computer
processor.

The original environment for TF1 was a non—event driven environment in
which the entire computer was devoted to one application. In this scheme display
changes and execution times are solely determined by the TF1 application. In contrast,
the X11 environment is a multi—tasking event driven interface in which the computer
resources must be shared. Under this scheme two large problems exist.

The first problem is to allow all the currently running applications to share the
resources in an acceptable fashion. As an example, the TF1 program is designed to use
a virtual colormap given a modifiable colormap containing less than 64 colors. Al-
though the TF1 application requires only 16 colors the allocation of these 16 colors from
a sixteen color colormap would restrict all other applications to the usage of the same
color set. By swapping colormaps the available colors are changed for the TF! applica-
tion. If more than 64 colors are available the assumption was made that the TF1 appli-
cation could use the given colormap resource without serious conflict with most other
applications. In this case the 16 required colors are allocated from the default colormap.
This example shows the methods TF1 uses to avoid conflict with other applications, but
an equally troublesome problem may be the conflicts other applications create with the
application of interest.

The second problem concerns the execution speed of an application. With oth-
er applications running, the demands placed upon the computer processor cannot be an-
ticipated. Two difficulties exist. First, if an application is to simulate a real-time
process the required computer processing ability may not be available. This would be a
potential problem in applications such as software producing animated motion. Second,
with a combination of a slow computer and an impatient operator an unwary user of an

application may start punching keys on the keyboard in an attempt to get the computer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

33
to respond, while in actuality the computer is attempting to resolve the large computa-

tional demands placed upon it.

PROGRAM CONSIDERATIONS IN PORTING. Another category described

in table 2 is the "program” category. This category describes general modifications re-
quired for the porting of TF1. These modifications are mainly comprised of changes in
the function calls used within the main program. For example, the function SetCo-
lor()(13) is used in MetaWINDOW but in order to implement a generic color setting
function a new function named SET_COLOR() was implemented. As a consequence all
calls to the SetColor() function were required to be modified to the SET_COLOR()
function. Similarly, generic intermediate functions were implemented for window oper-
ations and other graphical interfaces. These changes comprised a large amount of time
spent performing simple editing of source code. In addition, some source code changes
were required in several places. These code changes required conditional compilation.
For example, no printer support was provided in the X11 version. As a consequence,
conditional compilation was added so that a message would be displayed informing the
user that no printer support was provided in the X11 version. The modifications de-
scribed here comprise a large amount of editing. A nonportable aspect to the general
modifications was the material manager.!# This C module was written before software
engineering principles were used in the restructuring of TF1. Consequently, this code is
hard to read and somewhat non—portable.

LANGUAGE CONSIDERATIONS IN PORTING. Of the total time spent
porting TF1, approximately 18% is directly attributable to conflicts in the C language
implementations (see Table 2.). The original TF1 environment supported the ANSI C
standard and as a consequence TF1 was developed using this standard. When the UNIX
environment was examined ANSI C was not provided. Therefore, an ANSI C compiler/

language library was purchased for this environment. In using the new ANSI C compil-

14. For a description of the material manager software module refer to appendix A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

34
er library other conflicts were encountered. Although the ANSI C is stated as being

backwardly compatible with the older C standard, the library functionality has been
changed. Some libraries dependent upon functions contained in the older C version may
have conflicts in functionality with the newer C libraries. In order to port TF1 a deci-
sion was made to use the old UNIX C standard. The time spent resolving these lan-
guage conflicts was almost totally attributable to editing of the TF1 source code. Major
editing modifications included the changing of all function prototypes and minor modifi-
cations to the preprocessor directives. Appendix B contains a detailed list of conflicts
encountered in the C language implementations.

MISCELLANEOUS TIME SPENT PORTING. The last category listed in
Table 2 is miscellaneous. Approximately 12% of the time spent porting TF1 is attrib-
uted to this category. This time represents work performed in several categories de-
scribed above and also work performed which would not fit into any of the categories
above. As we stated for the general category under graphics this time might be used as

an indicator of the error in the time observations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

CHAPTER VI
HIGHER LEVEL GRAPHICAL INTERFACES

Here a discussion of higher level graphical interfaces is presented. An example
of these interfaces is represented diagrammatically in Figure 3. Our attention here is not
toward the trivialization of nonportable source code as presented in Chapter 4. The goal
here is to examine the usage of these packages as higher level standard interfaces and
future directions in the usage of graphical interfaces. This extra examination of graphi-
cal interfaces is provided because of the portability conflicts and rapid evolution of the
graphical interfaces encountered in modem programming environments.

Several years ago a programmer working with graphical interfaces might have
felt fortunate to have a graphics tool such as the Graphical Kernal System or the X Win-
dows Xlib library, but recent advances in software design have lead to higher level inter-
faces. In fact, the original design philosophy behind the X Window Xlib interface was
to provide a low level tool upon which higher level library tools would be developed.
Today, most graphical interfaces have higher level libraries available as development
tools for programmers. In the X Windows environment the three levels of graphical in-
terfaces are commonly available. The lowest level is the standardized Xlib interface
with an Xt Intrinsics layer interfaced. Still higher level libraries are available for con-
trolling widgets. In the DOS based MetaWINDOW environment higher level libraries
are available, providing widget like abilities.

At this point it appears certain that object—oriented interfaces are basic to the
design of these higher level interfaces. Currently, menuing, display boxes, and other
higher level functionality is being built in to these interfaces. Of particular importance

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyww.manaraa.com

36
to engineering are topics such as graphing interfaces, image drawing interfaces, and oth-

er engineering oriented functionality. A second concem in using these interfaces is the
policy concerning user interaction that many of these higher level libraries enforce. If a
policy concerning the appearance of an application is present, that policy must either be
duplicated in another environment or the user interaction with a program will appear dif-
ferent. Presently, this is a major concern in the usage of higher level interfaces.

It is certain that higher level interfaces will be available in future environments.
Questions concerning the type of functionality and the use of these interfaces are being

addressed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

CHAPTER VII
CONCLUDING REMARKS

In the previous chapters discussion has centered around the use of software li-
braries and the associated library interfaces. By using software libraries higher level
software functionality is available to programmers without the expense of software de-
velopment time. It is obvious that software libraries are used widely today and will be
used in a larger capacity in the future.

A brief discussion of each of the interfaces has been given in addition to a dis-
cussion on the methods of porting software. From this discussion and the experience of
porting TF1 several important aspects of porting should be addressed in the develop-
ment stage of a software system and before the actual porting of the software is at-
tempted. To reduce the time spent porting software the following topics should be
examined:

1) The software developers should be familiar with the functionality of library interfaces
in the anticipated porting environments thus allowing preliminary planning to avoid po-
tential conflicts.

2) Software engineering should be used in the design of the program with particular em-
phasis placed upon modularity in order to isolate nonportable code and information hid-
ing in order to limit the effects of nonportable data types (a good example of information
hiding is shown in Chapter V, p. 24).

3) Commonly used functions such as text drawing and line drawing should use interme-

diate functional layers in order to isolate nonportable functions.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

38
4) The functional requirements of an application should be defined early in development

to allow porting conflicts to be anticipated.

Using these simple guidelines the process of porting software may still be con-
siderable but less extensive than the porting of a poorly designed program. In particular,
a programmer should be aware of the trade—offs made in the development of a software
application. For example, by using an intermediate function at an appropriate place a
programmer has gained portability at the expense of code size and execution speed.

These trade—offs should be examined closely, and appropriate decisions made.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

APPENDIX A
THE SOFTWARE STRUCTURE OF TF1

TF1(23) is one of three IDES software products designed to provide user
friendly CAD support for plastic piece part design. Each of the three software products
has a similar structure and as a consequence share a large amount of C source code. The
general program structure can be seen in Figure 7. The program is divided into several
logical units. Initially, the program proceeds through a ”startup” sequence designed to
detect and modify the computer environment in order to provide a common interface for
the user modules. After the startup sequence is completed a control loop is entered. To-
gether with a menu system the control loop provides a method of moving between mod-
ules, printing, and exiting the program. In addition, a set of background utilities for
screen input/output, window management , and printing is provided. The modules, en-
closed by a thick line in Figure 5, are designed to use the background utilities and star-
tup sequence as an engine. Using this engine products may be modified, or created,
simply by modifying the user modules. In the case of TF1 six modules are currently
available. Two modules are text based learning aids for the user, three modules are used
to perform engineering design calculations, and one module provides a materials data-
base to supply plastic material properties to the engineering design modules.

The sourcé code to the program consists of 84 software modules and approxi-
mately 17,700 lines of source code. Fifty—nine hundred lines of source code are specif-
ic to the modules used in TF1, and 11,800 lines of source code are generic to the three

design programs.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

40

Startup Sequence
_ l Menu/Control loop

Draw ratio Sheet heating PartThickness
module module module

Material
Database

< Program utilities, interfaces to libraries, etc. >

Figure 7. The General Structure of TF1.

Tutorial
module

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

APPENDIX B
C LANGUAGE CONFLICTS IN PORTING TF1

Of the 148 hours spent porting TF1 17.6 hours!? are directly attributed to C lan-
guage conflicts between the two environments. Here a detailed description of the lan-
guage conflicts is presented.

TF1 was originally developed using the draft proposed ANSI C. Using this
source code a porting was attempted to a UNIX environment supporting ANSI C(11).
Immediately upon attempting to link TF1 in the new environment, language library con-
flicts were encountered. The language library functions used within the C source code
conformed to ANSI standards, but the X11 library required low level I/O routines not
available in ANSI C. An attempt was made to combine pieces of different C libraries in
order to provide the required functionality for the X11 library, but further conflicts arose.
As a consequence, the TF1 application was modified to use the available non—ANSI C
language and libraries.

Seventeen hours were spent modifying the TF1 source code to comply with the
non—-ANSI C language. The majority of this time was spent performing editing source
code for the following modifications:

1) The newer ANSI functional prototypes were modified to a non—-ANSI compatible
form. This required a large amount of source code editing.
2) Pre—processor directives using the # character were required to start in the first col-

umn of a line. Leading blanks were deleted from all preprocessor directives.

15. Refer to table 2 for a complete account of the time spent porting TF1.
41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

42
3) The inclusion of several files was eliminated in order to eliminate dependencies based

upon include file names. Local definitions were added for the commonly defined func-

tions which supplied return values other than of type int.

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

APPENDIX C
THE TF1 GRAPHICAL INTERFACE

A description is presented of the source code used to port the TF1 graphical in-
terface. The description is provided in two logical parts. The first portion describes a
“start—up” sequence used to initialize the TF1 graphical interface. The second portion

describes the graphical utilities not used in the “start—up” sequence.

THE TF1 START-UP SEQUENCE

The TF1 start—up sequence consists of several functions which are each ex-
ecuted once upon executing the TF1 program. Conditional compilation is used to
modify the compiled source code for the appropriate computer environment. The se-
quence of function calls used to initialize the TF1 program environment is shown in the
module "DESIGN.C” below:;

[¥ >>>>>>>>>>>>> FILE INFORMATION HEADER <<<<<<<<<<<<< ¥/

/* FILENAME — DESIGN.c */
/* LAST UPDATE —> Wed Sep 20, 1989 03:39:09p */
/* FILE STATUS —> Development version, not a release version */
/* FILE PURPOSE —> Main module for the thermoforming program. */
/* Contains functional calls for the startup sequence */
/* followed by the main program control loop */
/***/
/* EXTERNAL RESOURCES REQUIRED FOR THIS MODULE */

#include <string.h>
#include "includes.h”
#include ”d_gen.h”
#include “graphics.h”
#include "keyboard.h”
#include "menu.h”

/***/

/¥ FUNCTIONS IMPLEMENTED IN THIS MODULE */
int main();

/***/

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

44

Je ks sttt ek sk stk ks s ot ek sk ok ek stttk sk kel sk okl skttt ke okl sk ok kol /

/* MAIN — The main module for MTF1.C */
/***/
int main()

int action;
/***/
/* Setup the files that contain program information */

INIT_VERSION_INFO();

/***/

/* Setup the files that contain program information */
OPEN_RECORD_FILES();

/***/

/* Get user defined system configuration */
CONFIGURE);

/***/

/* Initialize the graphics system */
INIT_GRAPHICS_SYSTEM();

/***/

/* Initialize the file pathnames */
INIT_PATHS(),

/***/

/* Initialize the graphics fonts to be used */
INIT_FONT_INFORMATION();

/***/

/* Map the colors the approriate graphics device */
INIT_COLORS();

/***/

/* Initialize the event handling routines */
INIT_EVENTS();

/***/

/* Initialize the cursor handling system */
INIT_CURSOR();

/***/

/* Initialize the unit system strings to be used in this program */
INIT_UNITS();

/***/

/* Initialize the scaling for pen and screen sizes */
INIT_SCALING_INFORMATION();

/***/

/* Initialize the printer information */
INIT_PRINTERS();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

45

/***/

/* Layout the graphics screen ports, etc. for this application */
LAYOUT_GRAPHICS_SCREENS();

/* Start of main program control loop */

) /* End MAIN */

INITIALIZING THE GRAPHICAL INTERFACE.

The start—up functions, specific to the graphical interface are: INIT_GRAPH-
ICS_SYSTEM(), INIT_FONT_INFORMATION(), INIT_COLORS(),
INIT_EVENTS(), INIT_CURSORY(), and INIT_SCALING_INFORMATION(). The
modules containing these functions are shown below:

[>>>>>>55>5>>>> FILE INFORMATION HEADER <<<<<<<<<<<<< */

/* FILENAME —> GRAPHICS.C */
/* LAST UPDATE —> Wed Sep 13, 1989 04:28:32p */
/* FILE STATUS —> Development version, not a release version */

/* FILE PURPOSE —> Initialize MetaWindows for the appropriate */
E

graphics system/environment.
/***/

/* EXTERNAL RESOURCES REQUIRED FOR THIS MODULE *f
#include ”includes.h”
#include ”d_gen.h”

#if GS_X11
#include <X11/Xlib.h>
#include <X11/Xutil.h>

#elif GS_METAWINDOW
#include <GRconst.h>
#include <GRports.h>
#include <GRextr.h>
#endif

void INIT_GRAPHICS_SYSTEM();

/***/

/* EXTERNAL VARIABLES REQUIRED BY THIS MODULE */
#if GS_METAWINDOW

#define CG 1 /* color graphics adaptor — 640 x 200 black & white */
#define EGA128 2 /* enhanced graphics ad. 640 x 350 4 color */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

46
#define EGA256 3 /* enhanced graphics ad. 640 x 350 16 color */

#define HGA 4 /* hercules monochrome graphics */
#define VGAL6 5 /* ibm’s video graphics array 640 x 480 16 color */
#define MCGA 6 /* monochrome graphics adapter for ps\2’s */
#define TOSHIBA 7 /* Toshiba lap top */

#define ATTDEB 8 /* AT&T Display Enhancement Board */

int display_adapter_type = 3;

int display_screen_type = 6;#elif GS_X11
int screen;

int num_screens;

Display *display;

#endif

short int save_window_mode;
/* AUTOMATIC - handled by GS
MANUAL - use save/restore on images »
NONE - refresh display through 1I/O */

char default_display_name[100] = "NONE?”;
double screen_width =9.0,
screen_height = 8.0;
int screen_pwidth,
screen_pheight;

double width_per_pixel,
height_per_pixel;

/***/
/***/

/* 1) INIT_GRAPHICS_SYSTEM - Setup appropriate graphical */

configuration */
/***/

void INIT_GRAPHICS_SYSTEM()
{

int return_value;
strepy(default_display_name, "NONE”),
fprintf(startup_pointer, "\n\lnitializing graphics system:\n");

#if GS_METAWINDOW
save_window_mode = MANUAL,;
switch(display_adapter_type)

case CG:
fprintf(startup_pointer, "\\tInitializing for CGA\n");
return_value = InitGrafix(-CGA640x200);
screen_pwidth = 640,
screen_pheight = 200;
break;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

47

case ATTDEB:
fprintf(startup_pointer, "\\tInitializing for ATTDEB (640X400
16—color) \n”);

return_value = InitGrafix(—DEB640x400);
screen_pwidth = 640);

screen_pheight = 400;

break;

switch(return_value)
{

case —2:
printf("Undefined MetaGraphics device mode specified\n”);
fprintf(startup_pointer, "*\tUndefined MetaGraphics device mode
specified\n”);
exit(0);
break;

case —1:
printf("MetaWindow resident driver not present\n”);
fprintf(startup_pointer, "\\tMetaWindow resident driver not presenf\n”);
exit(0);
break;

case ():
fprintf(startup_pointer, "\{\tNo graphics initialization errors detected.\n”);
break;

default:
printf("Unknown graphics mode. Attempting to continue.\n”);
fprintf(startup_pointer, t\tUnknown graphics mode. Attempting to
continue.\n”);
break;

}
#elif GS_X11

/***/

/* Connect to X Server */
if(stremp(default_display_name, "NONE”) == 0)

fprintf(startup_pointer, "\{\tNo X Server defined by user\n”);
fprintf(startup_pointer, "\{\tAttempting to connect to alternate server\n”);
strepy(default_display_name, ”);

)
if((display = XOpenDisplay(default_display_name)) == NULL)
{

fprintf(startup_pointer, \{\t Unable to connect to X server %s\n”,
XDisplayName(default_display_name));

printf(’Cannot connect to X server %s\n”,
XDisplayName(default_display_name));
CLOSE_GRAPHICS();

exit(0);

fprintf(startup_pointer, \i\tConnected to X server = %s\n”,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

48
DisplayString(display));
fprintf(startup_pointer,\{\tUsing XWindows version %d.%d\n”,
Protocol Version(display), ProtocolRevision(display));
fprintf(startup_pointer, \{\tAs implemented by %s\n”,
ServerVendor(display));

/***/
/* Get display geometry information */
screen = DefaultScreen(display);
num_screens = ScreenCount(display);
screen_pwidth = DisplayWidth(display, screen);
screen_pheight = DisplayHeight(display, screen);
screen_width = DisplayWidthMM(display, screen);
screen_height = DisplayHeightMM(display, screen);
fprintf(startup_pointer, "M\tPixel width of screen = %d\n”, screen_pwidth);
fprintf(startup_pointer, "N\tPixel height of screen = %d\n”, screen_pheight);
fprintf(startup_pointer, "\\\tScreen width (mm) = %d\n”, screen _width);
fprintf(startup_pointer, "N\tScreen height (mm) = %d\n”, screen_height);
#endif
width_per_pixel = screen_width /(double)screen_pwidth;
height_per_pixel = screen_height /(double)screen_pheight;
fprintf(startup_pointer, "N\t Width per pixel (mm) = %g\n”, width_per_pixel);
fprintf(startup_pointer, "\{\tHeight per pixel (mm) = %g\n”,
height_per_pixel);
return;
} /* End INIT_GRAPHICS_SYSTEM */

INITIALIZING THE GRAPHICAL FONT INTERFACE.

The font interface module described below is used solely to initialize the font
environment for the X11 interface. The MetaWINDOW interface automatically pro-
vides a font with the attributes of Bold, Italic, and Underline.

[¥* >>>>>>>>>>>>>> FILE INFORMATION HEADER <<<<<<<<<<<< #/

/* FILENAME —> FONTS.c */
/* LAST UPDATE —> Wed Sep 13, 1989 04:24:21p */
/* FILE STATUS —> Developiment version, not a release version */
/* FILE PURPOSE —> Performs font initialization, etc. */

Ed *
/**4{**/
/* EXTERNAL RESOURCES REQUIRED FOR THIS MODULE */

#include ”includes.h”
#include “layout.h”
#include ”d_fonts.h”

void INIT_FONT _INFORMATION();
void TEXT_TYPE 0O;
void LIST_AVAILABLE_FONTS ();

#if GS_X11
XFontStruct *font_info;
char font_name[256] ="8x13";

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyww.manaraa.com

49

char default_font_name[256] ="NONE”;
XFontStruct *bold_font_info;

char bold_font_name|256] = "8x13bold”;
char default_bold_font_name[256] ="NONE”;
char default _font_path[100] = "NONE”;

char **font_paths;

int num_font_paths;

#elif GS_METAWINDOW
#endif

int char_pwidth,
char_pheight, char_bold_pwidth,
char_bold_pheight;int line_pheight,
line_bold_pheight,

ekttt bRl s kol sk ok sl ek skl stttk ofsle kol oot s el ek ke /
et sttt ek e ol e ok kol ekt ekt gl ok ool kon dfede ek ok

/* INIT_FONT_INFORMATION — */

/***/

void INIT_FONT_INFORMATIONY()
{
#if GS_X11

int i, j;

char **temp_paths;

#elif GS_METAWINDOW
#endif
fprintf(startup_pointer, "\n\tInitializing graphics fonts information:\n”);

#if GS_X11

/***/

/* Get the font paths */
temp_paths = XGetFontPath(display, &num_font_paths);
font_paths = (char **)malloc((num_font_paths+2)*sizeof(char *));
for(i = 0; i <= num_font_paths; i++)
font_paths|i] = (char *)malloc(120*sizeof(char));

for(i = 0; i < num_font_paths; i++)
strcpy(font_paths|i], temp_paths[i]);

for(i = 0; i < num_font_paths; i++)
fprintf(startup_pointer, "\{\tFont path # %d = %s\n”, i+1, font_paths{i]);

/* Determine if the default path is already available */
if(stremp(default_font_path, "NONE”) == 0)

strepy(default_font_path, ””),
fprintf(startup_pointer, "\{\tNo default font path specified by user\n”);

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

50
else

i = strlen(default_font_path);
if(default_font_path|i~1] !="/")

{
default_font_path[i] ="/
default_font_path[i+1] = "\)’;

for(i = 0; i < num_font_paths; i++)
if(strcmp(default_font_path, font_paths|i]) == 0)
{

fprintf(startup_pointer, "\\tDefault font path already available\n”);
break;

else if(num_font_paths—1 == i)

{
strepy(font_paths[num_font_paths], default_font_path);
num_font_paths++;
XSetFontPath(display, font_paths, num_font_paths);
fprintf(startup_pointer, "N\tAdding default font path = %s\n”,
default_font_path);
break;

}

}

)
XFreeFontPath(temp_paths);

/***/

/* Attempt to get the regular font */
if(strcmp(default_font_name, "NONE”) == ()

fprintf(startup_pointer, "\f\tNo default regular font name specified
by user\n”);

strepy(default_font_name, ’);

fprintf(startup_pointer, "\{\tAttempting to continue using alterate
regular font = %s\n”, font_name);

if((font_info = XLoadQueryFont(display, font_name)) == NULL)

fprintf(error_pointer, ZERROR: Unable to continue with alternate
regular font\n\tTerminating program because of inadequate fonts.\n”);
CLOSE_GRAPHICS();

exit(0);

else
fprintf(startup_pointer, "\t*\Loaded alternate regular font = %s\n”,
font_name);

}
else

if((font_info = XLoadQueryFont(display, default_font_name)) == NULL)
{

fprintf(startup_pointer, MMERROR: Unable to load user defined regular
font! %s\n”, default_font_name);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

51
LIST_AVAILABLE_FONTS ();
fprintf(startup_pointer, "\{\tAttempting to continue using alternate
regular font = %s\n”, font_name);
if((font_info = XLoadQueryFont(display, font_name)) == NULL)
{

/***/
/* Attempt to get the bold font */

/***/

/* Compute font geometries and print font information for regular font %/
char_pwidth = font_info—>max_bounds.width;
char_pheight = font_info—>max_bounds.ascent
+ font_info—>max_bounds.descent;

line_pheight = font_info—>ascent + font_info—>descent;

fprintf(startup_pointer, "\{\tPixel width of 1 character in regular font =
%d\n”, char_pwidth);

fprintf(startup_pointer, "\{\tPixel height of 1 character in regular font =
%d\n”, char_pheight);

fprintf(startup_pointer, "A\f\tDefault pixel height of each line in regular font =
%d\n”, line_pheight),

/***/
/* Compute font geometries and print font information for bold font */

} /* End INIT_FONT_INFORMATION */

/***/
/***/
/* TEXT_TYPE — */
/***/
void TEXT _TYPE(type)

int type;

{
#if GS_X11
if(type == NORMAL)
XSetFont(display, current_win—>graphics_context, font_info—>fid);
if(type >= BOLD)

XSetFont(display, current_win—>graphics_context, bold_font_info—>fid);

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

52

#elif GS_METAWINDOW
if(type == NORMAL)
TextFace(cNormal);,
if(type >= BOLD)
{

TextFace(cBold);
}

#endif
return;

)
#if GS_X11

/***/
/***/

/* LIST_FONTS_AVAILABLE — */

Jeskesedes ook sk etk s kbl okl ok koot skttt kol ko ek ook |
void LIST_AVAILABLE_FONTS()

#endif

INITIALIZING THE GRAPHICAL COLOR INTERFACE.

The graphical color interfaces for the two graphical environments vary greatly.
In the DOS based MetaWINDOW environment, color assignment is performed based on
information in the user defined configuration. Using this information color assignment
is made by assigning integer values to colors. In the X11 environment a more complex
color scheme is used, reducing the number of conflicts in environments using multiple
applications. The module COLOR.c is presented below:

[* >>>>>>>>>>>> FILE INFORMATION HEADER <<LLLLLLLLLLL LKL */

/* FILENAME -> COLORS.C */
/* LAST UPDATE -> Wed Sep 13, 1989 04:22:38p */
/* FILE STATUS — Development version, not a release version */
/* FILE PURPOSE —> Color initialization, etc. */

% sk
;**J**/
/* EXTERNAL RESOURCES REQUIRED FOR THIS MODULE */

#include includes.h”
#include "layout.h”

void INIT_COLORS();
void SET_COLOR ();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

53

#define LARGE_COLOR_ABILITY 64
#define SMALL_COLOR_ABILITY 16

/***/

/¥ EXTERNAL VARIABLES REQUIRED BY THIS MODULE *f
unsigned long screen_frame_color, /*The frame color of all screen ports */

unsigned long BILACK,

GREEN,
int number_of_colors = 2;#if GS_X11
Visual *visual;

Colormap *old_colormap,
new_colormap;

int display_depth;
#elif GS_METAWINDOW int display_depth;
#endif

/***/
/***/

/* 1) INIT_COLORS - Color initialization based upon graphics hardware */

/***/
void INIT_COLORS()

int i

int action;

unsigned long color_pal[16];

#if GS_X11
char color_name[16][50];
XColor color_def[16];
#elif GS_METAWINDOW
char color_name[16][50];
#endif

fprintf(startup_pointer, \n\tInitializing screen colors\n™);

#if GS_METAWINDOW
switch(display_adapter_type)

case CG:
fprintf(startup_pointer, "\\Initializing color map for CGA 2—color\n”);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

54
color_pal[0] = 0;
for(i = 1; i <= 15; i++) color_pal[i] = 1,
break;

case EGA128:
fprintf(startup_pointer, "\\tInitializing color map for EGA 16—color\n”);
for(i = 0; i <= 15; i++) color_pal[i] = (unsigned long)i;
number_of_colors = 16;
break;

default:
fprintf(startup_pointer, "\{\tNot able to initialize color map.\n”);
fprintf(startup_pointer, "\\tAttempting to continue\n”);

}

/* Map the colors */
BLACK = color_pal[0];

WHITE = color_pal[15];

#elif GS_X11
number_of_colors = DisplayCells(display, screen);
display_depth = DisplayPlanes(display, screen);
visual = DefaultVisual(display, screen);

fprintf(startup_pointer, "\f\tMaximum number of colors supported by
hardware = %d\n”, number_of_colors);
fprintf(startup_pointer, "N\tMaximum number of display planes = %d\n”,
display_depth);

switch(visual->class) /* <<<<<<<<<<<L<<L<LLLLLLL< non—portable */
case GrayScale:

fprintf(startup_pointer, "N\t Visual class: GrayScale (Monochrome/Gray
& Read/Write)\n”),
break;

defualt:
fprintf(startup_pointer, "N\t Visual class: NOT recognized\n”);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

55

/* Map the colors */
if((number_of_colors < SMALIL_COIL.OR_ABILITY) Il
(visual->class == GrayScale) |l /* Changeable B& W */
(visual->class == StaticGray)) /* Non—changeable B & W */

fprintf(startup_pointer, "\t\tColor restrictions detected, implementing
monochrome.\n”);
number_of_colors =2; BLACK = BlackPixel(display, screen);

BLUE =BLACK;
GREEN = BLACK;

WHITE = WhitePixel(display, screen);

else /* Some implementation of colors can be performed */
strcpy(color_name[0], “black™); /* BLACK */
strepy(color_name[1], “blue”); /* BLUE */

if((number_of _colors < LARGE_COLOR_ABILITY) &&
(visual—->class != StaticColor) &&
(visual->class !'= TrueColor))

fprintf(startup_pointer, "\ Limited colors available (between %d and %d
colors in colormap).\n”,
SMALL_COLOR_ABILITY,
LARGE_COLOR_ABILITY);

fprintf(startup_pointer, "\{\tAssigning colors to the virtual(swappable)
colormap.\n”),

new_colormap = XCreateColormap(display, RootWindow(display,screen),
visual, AllocNone);

old_colormap = &new_colormap;

fprintf(startup_pointer, "\\N#COLOR_NAMEMREDMGREENABLUE");

for(i=0; i<16; i++)

action = GET_COLOR(old_colormap, color_namel[i], &(color_def[i]));
if(action == —1)
fprintf(startup_pointer, "Unable to find %s in color database\n”,
color_nameli]);
if(action == 1) ;
fprintf(startup_pointer, NMMNOT allocating color cell for %s\n”,
color_name[i));

color_pal[i] = color_def[i].pixel;

if(strlen(color_nameli]) < 8)
fprintf(startup_pointer, "M% d\%s\N %N %od\t Tod\n”,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

56

(int)color_def[i].pixel, color_nameli],
(int)color_def[i].red,

(int)color_defli].green,
(int)color_def[i].blue);

else
fprintf(startup_pointer, "\\t%d\ %es\t % d\t %d\t %ed\n”,

(int)color_def[i].pixel, color_name[i],
(int)color_def[i].red,

(int)color_def[i].green,
(int)color_def[i].blue);

}
}

else

fprintf(startup_pointer, "NitLarge color ability detected (greater than %d colors
in colormap).\n”, LARGE_COLOR_ABILITY);

fprintf(startup_pointer, "\{\tImplementing 16 colors in the default color-
map.\n”);new_colormap = DefaultColonmap(display, screen); fprintf(star-
tup_ pointer, m\M\N#COLOR_NAMEMREDMGREENMBLUEWN”);

for(i=0; i<16; 1++)

action = GET_COLOR(&new_colormap, color_name[i], &(col-
or_def[i]));
if(action == —1)
fprintf(startup_pointer, ”"Unable to find %s in color database\n”, col-
or_namel[i]);
if(action == 1)
fprintf(startup_pointer, YNOT allocating color cell for %s\n”, col-
or_namel[i]); color_pal[i] = color_def[i].pixel;
if(strlen(color_namefi]) < 8)
fprintf(startup_pointer, "NN%d\N % s\ %d\t %d\t%d\n”, (int)col-
or_def[i].pixel, color_namel[i],
(int)color_def[i].red, (int)color_def[i].green, (int)col-
or_def[i].blue);
else
fprintf(startup_pointer, "tN%d\t %s\t %ed\t%d\t%d\n”, (int)col-
or_defli].pixel, color_nameli],
(int)color_def[i].red, (int)color_defli].green, (int)col-
or_defli].blue);

old_colormap = &new_colormap;

)
BLACK = color_pal[0];

WHITE = color_pal[15];
}#endif

/* Assign all of the screen colors */
screen_frame_color = YELLOW;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

57

material_highlight_color = RED; /* Choose the approporiate background
color for monochrome displays */
if(number_of _colors == 2)
{
graphic_port_background_color= BLACK;

}

else
{
graphic_port_background_color= BLUE;
txt_port_background_color = BLUE,;

}

return,
} /* End INIT_COLORS */

#if GS_X11

int GET_COLOR(color_map, color_name, color_def)
/¥ —1 — no dbf name found */
Colormap *color_map; /* 0 — success *f
char *color_name; /* 1 —unable to allocate */
XColor *color_def;

{

/* Lookup the color name in the database */
if(! XParseColor(display, *color_map, color_name, color_def))
return(-1);
if(XAllocColor(display, *color_map, color_def))
return(0);
return(l);

#endif
/***/

/***/

/* SET_COLOR - Sets the forground color for the current window */
/***/

void SET_COLOR(desired_color)
unsigned long desired_color;

{
#if GS_METAWINDOW
PenColor((int)desired_color);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

58

#elif GS_X11
XSetForeground(display, current_win—>graphics_context, desired_color);

#endif

return;

}
INITIALIZING THE GRAPHICAL EVENT INTERFACE.

The TF1 event interface is designed to resolve all non-keyboard events auto-
matically. In the DOS based version of TF1 an event driven system is not used. A por-

table interface for the two graphical environments is shown below:

[¥* >>>>>>>>>>>> FILE INFORMATION HEADER <<<<<g<c<cgc<< */

/* FILENAME —> EVENT.C */
/% LAST UPDATE > Wed Sep 13, 1989 04:32:37p */

/* FILE STATUS —> Development version, not a release version */
/* FILE PURPOSE -> Handles events for event driven graphics, etc. */
k] L]

/**/

/* EXTERNAL RESOURCES REQUIRED FOR THIS MODULE */
#include "includes.h”

#include “graphics.h”

#include colors.h”

void INIT_EVENTS();
int RESOLVE_EVENTS();

#if GS_X11
unsigned long event_mask;
XEvent event;

#elif GS_METAWINDOW
#endif

/**/
/**/

/* INIT_EVENTS - */

/**/
void INIT_EVENTS()
fprintf(startup_pointer, "\n\tInitializing event selections.\n”);

#if GS_X11
event_mask = KeyPressMask | ButtonPressMask |
ColormapChangeMask | ExposureMask;

#elif GS_METAWINDOW

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

59
#endif
return;

}

sk 3t she she she sk s she sfe she s she sfe she 3¢ she s s she sfe she 2 38 sk ok sk ke 3k e s she sfe s s sl she she ke sk she sk s 2he she sk e e she she S she ofe afe e e she ke e e sk

stk sk ol ootttk sttt ettt tole el ok el okt ok ik ko ek ok f
/¥ RESOLVE_EVENTS — '

int RESOLVE_EVENTS()

*/
**/
/* return values:

—1 — keyboard event in queue
0 — all events resolved */
{

nt pumber__of_events,
1,
#if GS_X11
XFlush(display);

number_of_events = XEventsQueued(display, QueuedAfterFlush),
for(i = 1; i <= number_of_events; i++)

XNextEvent(display, &event);
switch(event.type)
case KeyPress:
XPutBackEvent(display, &event);
return(—1);
break;

case ButtonPress:
break;

case ColormapNotify:
if(event.xcolormap.colomap == *old_colormap)

/* Comparing the XID’s */
fprintf(error_pointer, \NWARNING: Colormap event
received\nn”’);
}
break;
case Expose:
break;
default:
break;
}
}
#elif GS_METAWINDOW
Yendif
return(0);
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

60
INITIALIZING THE GRAPHICAL CURSOR INTERFACE.

The implementation of a graphical cursor in the TF1 environment utilizes four
functions. The first, INIT _CURSOR(), initializes the environment dependent cursor.
The three other functions involve the visibility of the cursor and the movement of the
cursor within a graphical window. All of the functions pertaining to the graphical cursor
are shown below:

[¥* >>>>>>>>>>>>> FILE INFORMATION HEADER <<<<<<<<<<<< ¥/

/* FILENAME —> CURSOR.c */
/* LAST UPDATE —> Wed Sep 13, 1989 04:26:55p */
/* FILE STATUS —> Development version, not a release version */
/* FILE PURPOSE —> Graphics windows/ports layout */
/* */

/**/

/¥ EXTERNAL RESOURCES REQUIRED FOR THIS MODULE */
#include string.h”

#include ”includes.h”

#include "layout.h”

#include ”colors.h”

void INIT_CURSORY);
void SHOW_CURSOR();
void MOVE_CURSOR();
void HIDE_CURSOR();

#if GS_X11
#include <X11/cursorfont.h>
static Cursor input_cursor;

#endif
static window_type *cursor_window;
static int visible = NO;
static int X_posit,

y_posit;

/**/
/**/

/* INIT_CURSOR - %/

/**/

void INIT_CURSOR()

fprintf(startup_pointer, "\nInitializing cursor for program.\n\n”);

x_posit = 0.0;
y_posit = 0.0;
#if GS_X11

input_cursor = XCreateFontCursor(display, XC_top_left_arrow);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

61
#elif GS_METAWINDOW

#endif
return;
} /¥ End INIT_CURSOR %/

ekt stttk ol kot otk otk Rkt otttk kol sk kol sk tokeok etk kot kofok /
/**/
/* SHOW_CURSOR — */
/**/
void SHOW_CURSOR(window_pointer)

window_type *window_pointer;

{
if(visible == NO)

{
visible = YES;
#if GS_X11

cursor_window = window_pointer;

XDefineCursor(display, cursor_window—>window, input_cursor);

XGrabPointer(display, cursor_window-->window, False,
NoEventMask, GrabModeAsync, GrabModeAsync,
cursor_window->window, input_cursor, CurrentTime);

XWarpPointer(display, None, cursor_window—>window, 0,0,0,0,

X_posit, y_posit);

#elif GS_METAWINDOW
ShowCursor();

#endif
}

retumn;
) /* End SHOW_CURSOR */

/**/
/**/

/* MOVE_CURSOR ~ */

/**/

void MOVE_CURSOR(x_coord, y_coord)
double x_coord,
y_coord;
{

x_posit = TRANSFORM_X_COORDINATE(x_coord),
y_posit = TRANSFORM_Y_COORDINATE(y_coord),
if(visible == YES)

{
#if GS_X11
XWarpPointer(display, None, cursor_window—>window, 0, 0, 0, 0,
X_posit, y_posit);

#elif GS_METAWINDOW
MoveCursor(x_posit, y_posit);

#endif
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

62
} /* End MOVE_CURSOR */

/**”**
**/

/* HIDE_CURSOR — */

/**/

void HIDE_CURSOR()
{
if(visible == YES)

{
visible = NO;
#if GS_X11
XUngrabPointer(display, CurrentTime);
XUndefineCursor(display, cursor_window—>window),

#elif GS_METAWINDOW
HideCursor();
#endif
}

return;
} /¥ End HIDE_CURSOR - */

INITIALIZING THE GRAPHICAL VIRTUAL COORDINATE INTERFACE.

The module SCALE.c was developed to implement a graphics environment in-
dependent virtual coordinate system. This implementation is a mapping from a user de-
fined real coordinate system to a window defined pixel coordinate system. The source
code for this module is shown below:

[>>>>>>>>>>>>> FILE INFORMATION HEADER <<<<<<<<<<<< */
/* FILENAME-—> SCALE.c*/
/* LAST UPDATE—> Wed Sep 13, 1989 04:24:21p*/
/* FILE STATUS—> Development version, not a release version*/
/* FILE PURPOSE—> Performs screen scaling for drawings*/

ok %k
;**i***/
/* EXTERNAL RESOURCES REQUIRED FOR THIS MODULE*/
#include <string.h>
#include includes.h”
#include ”d_scale.h”
#include "fonts.h”
#include "layout.h”

voidINIT_SCALING_INFORMATION();
voidSET_SCALING_FACTORS();
int_vector_2dTRANSFORM_COORDINATES();
inTRANSFORM_X_COORDINATE();

intTRANSFORM __Y_COORDINATE();

int win_min_pwidth,

win_min_pheight,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

63

win_pwidth,
win_pheight,

win_max_pwidth,
win_max_pheight,height_mm,
width_mm;
double aspect_ratio;
static int pwidth,

pheight;

virtual_scale *default_transform = NULL,;

double virt_scale_x_offset,
virt_scale_y_offset,
virt_scale_x_mult,
virt_scale_y_mult;

/**/
/**/

/* 1) INIT_SCALING_INFORMATION - */

/**/

void INIT_SCALING_INFORMATION()
fprintf(startup_pointer, \n\Initializing screen scaling information\n”);

#if GS_X11
/**/
/* Determine the parent window size based on the selected font size */
win_min_pwidth = char_pwidth *81 ;
win_min_pheight = char_pheight *26 ;
if(win_min_pwidth > screen_pwidth Il win_min_pheight >
screen_pheight)

fprintf(startup_pointer, ”Selected font is to large for display\n”);
CLLOSE_GRAPHICS();
exit(0);

fprintf(startup_pointer, "\t\tUnadjusted min. window pixel width
= %d\n”, win_min_pwidth);
fprintf(startup_pointer, "N\f\tUnadjusted min. window pixel height = %d\n”,
win_min_pheight);
width_mm = (int)((double)win_min_pwidth *width_per_pixel);
height_mm = (int)((double)win_min_pheight *height_per_pixel);
aspect_ratio = (double)height_mm/(double)width_mm,;
fprintf(startup_pointer, \\tUnadjusted aspect ratio = %g\n”,
aspect_ratio);

/**/

/* Adjust the window size so a reasonable aspect ratio is attained */
if(width_mm > height_mm)
{
win_min_pheight = (int)((double)win_min_pheight *
(double)width_mm / (double)height_mm);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

64
if(win_min_pheight > screen_pheight)
win_min_pheight = screen_pheight;
height_mm = (int)((double)win_min_pheight * height_per_pixel);

else
{
win_min_pwidth = (int)((double)win_min_pwidth *
(double)height_mm / (double)width_mm);
if(win_min_pwidth > screen_pwidth)
win_min_pwidth = screen_pwidth;
width_mm = (int)((double)win_min_pwidth *width_per_pixel);

win_pwidth = win_min_pwidth;
win_pheight = win_min_pheight;
win_max_pwidth = win_pwidth;

win_max_pheight = win_pheight;

line_pheight = (int)((double)win_pheight/25.0);

fprintf(startup_pointer, "N\tAdjusted min. window pixel width = %d\n”,
win_min_pwidth);

fprintf(startup_pointer, "\f\tAdjusted min. window pixel height = %d\n”,
win_min_pheight);

aspect_ratio = (double)height_mm/(double)width_mm;

fprintf(startup_pointer, "\ Adjusted line pixel height = %d\n”,
line_pheight);

fprintf(startup_pointer, "\t\tAdjusted aspect ratio = %g\n”,

aspect_ratio);

#elif GS_METAWINDOW
win_min_pwidth = screen_pwidth;
win_min_pheight = screen_pheight;

win_pwidth = screen_pwidth;
win_pheight = screen_pheight;
win_max_pwidth = screen_pwidth;
win_max_pheight = screen_pheight;
aspect_ratio = screen_height/screen_width;
line_pheight = (int)((double)win_pheight/25.0);
fprintf(startup_pointer, "\f\tLine pixel height = %d\n”, line_pheight);
fprintf(startup_pointer, "\{\tAspect ratio = %g\n”, aspect_ratio);
#endif
return,
} /* End INIT_SCALING_INFORMATION */

/**/
/**/

/* SET_SCALING_FACTORS - */

/**/
void SET_SCALING_FACTORS()
{
if(default_transform !'= NULL)
if(default_transform—>v_orig == scale_UPPER_LEFT)
{

virt_scale_x_offset = default_transform—>virt_xorig;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

65
virt_scale_y_offset = default_transform—>virt_yorig;
virt_scale_x_mult = (double)(current_win—>pwidth) /
(double)(default_transform—>virt_width);
virt_scale_y_mult = (double)(current_win—>pheight)/
(double)(default_transform—>virt_height);

}
else if(default_transform—>v_orig == scale_UPPER_RIGHT)

fprintf(error_pointer, "\torigin for default transform =
scale_ UPPER_RIGHT\n);
fprintf(error_pointer, "\tThis coordinate origin is not implemented
yet\n”);

)
else if(default_transform—->v_orig == scale_LOWER_LEFT)
{

virt_scale_x_offset = default_transform—>virt_xorig;
virt_scale_y_offset = (double)current_win—>pheight +
(double)(default_transform—>virt_yorig)*
(((double)(current_win—>pheight)) /
((double)(default_transform—>virt_height)));
virt_scale_x_mult = (double)(current_win—>pwidth) /
(double)(default_transform—>virt_width);
virt_scale_y_mult =—(double)(current_win->pheight) /
(double)(default_transform—>virt_height);

}
else if(default_transform—>v_orig == scale_ LOWER_RIGHT)

fprintf(error_pointer, "TERROR: Origin for default transform =
scale LOWER_RIGHT\n”);
fprintf(error_pointer, "NtThis coordinate origin is not implemented
yet\n”);
}

else

fprintf(error_pointer, "WARNING: Unable to set scale factors for
window\n”);
}
)

retum,

}

/**/
/**/

/* TRANSFORM_COORDINATES — */

/**/

int_vector_2d TRANSFORM_COORDINATES (virtual_point)
double_vector_2d virtual_point;

{
int_vector_2d pixel_point;
if(default_transform—>use_v == YES)
switch(default_transform—>v_orig)

case scale_ UPPER_LEFT:
pixel_point.x_coord = (int)((virtual_point.x_coord —

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

66

virt_scale_x_offset)*virt_scale_x_mult);
pixel_point.y _coord = (int)((virtual_point.y_coord —

virt_scale_y_offset)*virt_scale_y_mult);
break;

case scale_ LOWER_LEFT:
pixel_point.x_coord = (int)((virtual_point.x_coord —
virt_scale_x_offset)*virt_scale_x_mult);
pixel_point.y_coord = (int)(virt_scale_y_offset +
(virtual_point.y_coord *virt_scale_y_mult));
break;

default:
fprintf(error_pointer, ’ERROR: Illegal coordinate transformation
attempted\n”);
fprintf(error_pointer, "\tNo coordinate origin specified.\n\n");
break;
)

else

{

pixel_point.x_coord = (int)(virtual_point.x_coord),
pixel_point.y_coord = (int)(virtual_point.y_coord);
}

return(pixel_point);

/**/
Akt sdeseon ettt sk ok ot et ot e or ke ek el skttt ks otk ko ke ok /
/* TRANSFORM_X_COORDINATE — */
[t sttt stk etttk ok o sl ok ol ekl foledek okl sk otk kot ok /
int TRANSFORM_X_COORDINATE(virtual_x_point)

double virtual_x_point;

{

int pixel_point; if(default_transform->use_v == YES)

switch(default_transform—>v_orig)

{
case scale_UPPER_LEFT:
case scale_LLOWER_LEFT:
pixel_point = (int)((virtual_x_point — virt_scale_x_off-
set)*virt_scale_x_mult);
break; default:
fprintf(error_pointer, "ERROR: Illegal coordinate transformation at-
tempted™\n”);
fprintf(error_pointer, ’tNo coordinate origin specified.\n\n");
break;
else

pixel_point = (int)(virtual_x_point);
} return(pixel_point);

/***/
/**/

/* TRANSFORM_Y_COORDINATE — */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

67

/**/

int TRANSFORM_Y_COORDINATE(virtual _y_point)
double virtual _y_point;
{

int pixel_point;

if(default_transform—>use_v == YES)
switch(default_transform—>v_orig)

{
case scale_ UPPER_RIGHT:
case scale_ UPPER_LEFT:
pixel_point = (int)((virtual_y_point —
virt_scale_y_offset)*virt_scale_y_mult);
break;

case scale_LLOWER_RIGHT:
case scale_ LOWER_LEFT:
pixel_point = (int)(virt_scale_y_offset + (virtual _y_point
*virt_scale_y_mult));
break;

default:
fprintf(error_pointer, "ERROR: Illegal coordinate transformation
attempted\n™);
fprintf(error_pointer, "No coordinate origin specified.\n\n”);
break;
}

else
pixel_point = (int)(virtual _y_point);

return(pixel_point);

}

/**/
/**/

/* SET_CHAR_VWIDTH - */

/**/

double SET_CHAR_VWIDTH()

double virtual_vwidth;

virtual_vwidth = (double)char_pwidth/virt_scale_x_mult;
if(virtual_vwidth < ()

virtual_vwidth = —virtual_vwidth; return(virtual_vwidth);

}

/**/
/**/

/% SET_CHAR_VHEIGHT - */

/**/

double SET_CHAR_VHEIGHT()

double virtual vheight;
virtual_vheight = (double)char_pheight/virt_scale_y_mult;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

68
if(virtual_vheight < 0)
virtual_vheight = —virtual _vheight; return(virtual_vheight);

}
OTHER TF1 GRAPHICAL UTILITIES

The source code that is shown below describes several other graphical inter-
faces used in the TF1 program. The code shown here is an excellent example of the
usage of porting concepts presented in Chapter 4.

¥ >>5>>>55>>555S FILE INFORMATION HEADER <<<<<<g<<<<<<< ¥/

/* FILENAME —> STRING.C */
/* LAST UPDATE —> Wed Sep 20, 1989 03:54:03p */
/* FILE STATUS —> Some functions do nothing */
/* FILE PURPOSE —> To provide string handling utilities, some */

* MetaWindows dependent. */

/***/
#include <string.h>

#include "includes.h”

#include ”d_scale.h”
#include "d_gen.h”
#include "layout.h”
#include “colors.h”
#include "fonts.h”

void DRAW_STRING3();
void DRAW_STRING7();
#define STRING_SIZE 100

short int text_attributes;

/***/
Jeskw stttk skokokek ok ot okttt koot sk otelestoteole okttt skt sk okt kool deololekokok
/* DRAW_STRING3 — Outputs a string using the default values */
/***/
void DRAW_STRING3(string, x_coord, y_coord)

char string[];

double x_coord,

y_coord;

double_vector_2d v_point;
int_vector_2d point;

v_point.x_coord = x_coord;
v_point.y_coord = y_coord;
point = TRANSFORM_COORDINATES(v_point);

#if GS_METAWINDOW

MoveTo(point.x_coord, point.y_coord);
if(strlen(string) > 79)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

69
printf("”%c”, (char)7);
DrawString(string);#elif GS_X11
XDrawlmageString(display, current_win—>window,
current_win—>graphics_context,
point.x_coord, point.y_coord,
string, strlen(string));

#endif
}

/***/

/* DRAW_STRING?7 — Outputs a string using the specified values */

/***/

void DRAW_STRING7(string, x_coord, y_coord, length, direction, type, color)

char string[];
double x_coord,
_coord;
int length,
direction,
type;

unsigned long color;

{

int i, j;
double_vector_2d v_point;
int_vector_2d point;

int X_pos, y_pos;
char dummy_string[STRING_SIZE];

SET_COLOR(color);
TEXT_TYPE(type),

v_point.x_coord = x_coord;
v_point.y_coord = y_coord;
point = TRANSFORM_COORDINATES(v_point);

/* Check to insure the string is not to long */
if(STRING_SIZE-10 <= length)
{

fprintf(error_pointer, ’ERROR: DRAW_STRING?7 internal string buffer
size exceeded\n”);
length = STRING_SIZE-10;
}

/* End the string at the specified length */
for(i = 0; i < length; i++)

dummy_string[i] = string[i];
if(string[i] == \O’)
break;
}
for(j=i; j<length; j++)
dummy_string[j] =" ’;
dummy_string[length] = \0’;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

70

#if GS_METAWINDOW

HideCursor();
MoveTo(point.x_coord, point.y_coord);

switch (direction)

{
case RIGHT:
TextPath(pathRight);
break;

case UP:
TextPath(pathUp);
break;

case DOWN:
TextPath(pathDown);

break;

default:
break;

}

DrawText(dummy_string, 0, length+1);
if(direction != ()

TextPath(pathRight);

ShowCursor();

#elif GS_XI1
switch (direction)

{
case RIGHT:

XDrawlmageString(display, current_win—>window,
current_win—>graphics_context, point.x_coord,

point.y_coord, dummy_string, length);
break;

case UP:
fprintf(error_pointer, JERROR: Text path UP not implemented yet'\n”);

break;

case DOWN:
X_pos = point.x_coord,;
y_pos = point.y_coord,;
for(i=0; i<length; i++)

if(dummy_string[i] == "\0’)

break;

XDrawlmageString(display, current_win—>window,
current_win—>graphics_context, X_pos, y_pos,
&(dummy_string[i]), 1),

y_pos =y_pos+char_pheight;
break;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

71
default: /* The default is RIGHT */
XDrawImageString(display, current_win—>window,
current_win-->graphics_context,
point.x_coord, point.y_coord, dummy_string,

length);
break;
}
#endif
TEXT_TYPE(NORMAL);
return;
) /* End STRING_OUTPUT */

J¥ >>>>>>>>>>>>>> FILE INFORMATION HEADER <<<<<<<<<<<<<< */

/¥ FILENAME —> DRAW.c */
/* LAST UPDATE —> Wed Sep 13, 1989 04:27:51p */
/* FILE STATUS —> Development version, not a release version */

/* FILLE PURPOSE —> Performs screen drawing operations within windows */
/***/
/* EXTERNAL RESOURCES REQUIRED FOR THIS MODULE */
#include ”includes.h”

#include “layout.h”

#include colors.h”

#include scale.h”

void DRAW_LINE();
void DRAW_ARC ();

/***/
[tttk ook ok oo kR kR o koo ko ekl kol ek |
/¥ DRAW_LINE4 — */
/***/
void DRAW_LINE4(x_start, y_start, x_finish, y_finish)
double X_start,

y_start,

x_finish,

y_finish;

double_vector_2d v_start, v_finish;

int_vector_2d start, finish; v_start.x_coord = x_start;
v_start.y_coord = y_start; v_finish.x_coord = x_finish;
v_finish.y_coord =y_{finish;

start = TRANSFORM_COORDINATES(v_start);
finish = TRANSFORM_COORDINATES(v_finish);

#if GS_METAWINDOW
MoveTo(start.x_coord, start.y_coord);
LineTo(finish.x_coord, finish.y_coord);#elif GS_X11
XDrawLine(display, current_win—->window, current_win—>graphics_context,
start.x_coord, start.y_coord.
finish.x_coord, finish.y_coord);
#endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

72
/* End DRAW_LINEA4 */

/***/
/***/
/* DRAW_LINEG6 — */
/***/
void DRAW_LINEG6(x_start, y_start, x_finish, y_finish, width, color)
double X_start,
y_start,
x_finish,
y_finish;
int width;
unsigned long int color;
{
double_vector_2d v_start, v_finish;
int_vector_2d start, finish;
v_start.x_coord = x_start;
v_start.y_coord = y_start;
v_finish.x_coord = x_finish;
v_finish.y_coord =y_finish;

start = TRANSFORM_COORDINATES(v_start);
finish = TRANSFORM_COORDINATES(v_finish);
SET_COLOR(color);

#if GS_METAWINDOW
MoveTo(start.x_coord, start.y_coord);
PenSize(width, width);
LineTo(finish.x_coord, finish.y_coord),

#elif GS_X11
XDrawlLine(display, current_win—>window, current_win—>graphics_context,
start.x_coord, start.y_coord,
finish.x_coord, finish.y_coord),
#endif
/* End DRAW_LINE */

/***/
/***/
/¥ DRAW_ARC7 — *f
/***/
void DRAW_ARC(x_center, y_center, x_radius, y_radius, start_angle,
finish_angle, color)
double X_center,
y_center,
x_radius,
y_radius,
start_angle,
finish_angle;
unsigned long int color;
{
double_vector_2d v_tl, v_tr, v_bl, v_br; /* the rectangle comers */
double_vector_2d v_center, v_radius;
int_vector_2d tl, tr, bl, br, /* the rectangle corners */
center, radius;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

_ 73
double v_width, v_height;
int width, height;

#if GS_METAWINDOW
rect arc_rect;

#endif

v_center.x_coord = x_center;
v_center.,y_coord = y_center;
v_radius.x_coord = x_radius;
v_radius.y_coord = y_radius;

v_tl.x_coord = x_center—x_radius;

v_tLy_coord = y_center+y_radius;

v_tr.x_coord = x_center+x_radius;

v_try_coord = y_center+y_radius;

v_bl.x_coord = x_center—x_radius;

v_bl.y_coord = y_center-y_radius;

v_br.x_coord = X_center+x_radius;

v_bry_coord = y_center-y_radius; v_width = x_radius*2.0;
v_height = y_radius*2.0;

tl = TRANSFORM_COORDINATES(v_tl);

tr = TRANSFORM_COORDINATES(v_tr);

bl = TRANSFORM_COORDINATES(v_bl);

br = TRANSFORM_COORDINATES(v_br);

center = TRANSFORM_COORDINATES(v_center);

width = tr.x_coord-tl.x_coord;
height = bl.y_coord-tl.y_coord;
SET_COLOR(color);

#if GS_METAWINDOW
SetRect(&arc_rect, tl.x_coord, tl.y_coord,
br.x_coord, br.y_coord),

FrameArc(&arc_rect, (int)(start_angle*10.0),
(int)((finish_angle—start_angle)*10.0)),

#elif GS_X11
XDrawArc(display, current_win—->window, current_win—>graphics_context,
tl.x_coord, tl.y_coord,
width, height,
(int)(64.0*start_angle),
(int)(64.0*(finish_angle—start_angle)));

#endif
return;
} /* End DRAW_ARC */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

REFERENCES

1. ”Automating Data Management.” Mechanical Engineering 3 (1989): 73-6.

2. Bata, Reda M. ”Integrated Data Bases for CAD/CAM.” Mechanical Engineering
12 (1989): 20.

3. Bhat, Srinivasa K. and David D. Beagan, “Feature-Based Data Management.”

Mechanical Engineering 3 (1989): 68-72.

4. Codd, E.F. ”A Relational Model of Data for Large Shared Data Banks.”
omnunications of the Association of Computing Machinery 6 (1970): 377-87.

5. Digital Equipment Corporation. ULTRIX Worksystem Software Guide to the
GKS/2b Library. N.p.: n.p., 1987.

6. Gloudeman, Joseph F. and Robert R. Brown, "Managing Data for MCAE.”
Mechanical Engineering 3 (1989): 10, 92.

7. Jaeschke, Rex. Portability and the C Language. Indiana: Hayden Books, 1988.

8. Kemm, Tom. A Practical Guide to Normalization.” DBMS 13 (1989): 46.

9. Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language. 2nd
ed. New Jersey: Prentice Hall, 1988.

10. Lecarme, Olivier and Mireille Pellissier Gart. Software Portability. New York:
McGraw—Hill, 1986.

11. LPI-C v. 1. Computer software. Framingham, Massachusets: Language Processors
Inc., 1989

12. Lucker, P.A. Good Programming Practice in Ada. Boston: Blackwell Scientific
Publications, 1987.

13. Metagraphics Software Corporation. MetaWINDOW Reference Manual C. N.p.:
n.p., 1986.

14. Microsoft Cv. 5.0. Computer software. Washington: Microsoft Corporation, 1988.

15. Nye, Adrian. Xlib Programming Manual for Version 11. Vol. 1 of The Definitive

AT I ERTLA A LT I3 844

Guides to the X Window System. 5 vols. Boston: O’Reilly and Associates, 1988.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

75
16. Nye, Adrian and Tim O’Reilly. X Toolkit Intrinsics Programming Manual for X

Version 11. Vol. 4 of The Definitive Guides to the X Window System. 5 vols.
Boston: O’Reilly and Associates, 1990.

17. Papazoglou, M. and W. Valder. Relational Database Management: A Systems
Programming Approach. New York: Prentice Hall, 1989.

18. Paredaens, J., ed. Databases. Florida: Academic Press, Inc., 1987.

19. Pratt, Terrance W. Programming Languages: Design and I_mplgmgg ation. 2nd ed.
New Jersey: Prentice Hall, 1984.

20. Pugh, Ken. "Questions and Answers, Readability, Portability, and Coding Style.”
The C Users Journal. 1 (1990): 113.

21. Quercia, Valerie and Tim O’Reilly. X Window System User’s Guide for Version 11.
Vol. 3 of The Definitive Guides to the X Window System. 5 vols. Boston: QO’Reilly
and Associates, 1989.

22. Smith, Harry F. Data Structures: Form and Function. Illinois: Harcourt Brace
Javanovich, 1987.

23. TF1. Computer software. Laramie, Wyoming: Integrated Design Engineering
Systems Inc., 1989.

24. Turner, Ray. Software Engineering Methodology. Virginia: Reston Publishing Co.,
Inc., 1984.

25. Wallis, Peter J.L.. Portable Programming. New York: Halsted Press, 1982.

26. X Toolkit Intrinsics Reference Manual for X Version 11. Vol. 5 of The Definitive
Guides to the X Window System. 5 vols. Boston: O’Reilly and Associates, 1990.

27. Xlib Reference Manual for Version 11. Vol. 2 of The Definitive Guides to the X
Window System. S vols. Boston: O’Reilly and Associates, 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

